$C_{15}H_{23}N_{2}O^{+}.CIO_{4}$.H ₂ C	15H	23N2	O+.C	CIO₄	·.H ₂ C
--	-----	------	------	------	--------------------

C2-C3	1.360 (8)	C13'—C1	4	1.55 (3)
C3C4	1.416 (8)	C14-C15	5	1.476 (9)
C404	1.244 (7)	C15N10	5	1.518 (7)
C4—C5	1.506 (7)	N16-C1	7	1.497 (6)
C5-C6	1.518 (7)	C11—O2E	}	1.30 (2)
C6C7	1.518 (7)	C1104E	3	1.35 (2)
C7—C8	1.521 (8)	C11—01A		1.35 (2)
C7-C17	1.527 (7)	C1104A	l	1.35 (2)
C8—C9	1.517 (8)	C11—O1E	3	1.37 (2)
C9C10	1.500 (9)	C11—O3A	l	1.38 (2)
C9-C11	1.512 (8)	Cl1—024		1.39 (2)
C11N16	1.515 (7)	C11—O3E	}	1.40 (2)
C2-N1-C6	116.9 (4)	C12-C13	G_C14	121.0 (20)
C2N1C10	116.3 (5)	C12′—C1	.3'—C14	124.7 (25)
C6—N1—C10	116.5 (4)	C15-C14	⊷C13	105.7 (11)
N1—C2—C3	125.0 (4)	C15-C14	IC13'	118.3 (12)
C2—C3—C4	121.0 (5)	C14C15	5—N16	114.4 (5)
04C4C3	124.0 (5)	C17—N10	5—C11	112.4 (4)
04C4C5	120.8 (5)	C17—N10	5—C15	112.8 (4)
C3C4C5	115.1 (5)	C11—N16	5—C15	107.8 (4)
C4C5C6	113.3 (4)	N16—C17	7 — C7	113.5 (4)
N1-C6-C5	109.8 (4)	O2B—C11	O4 <i>B</i>	115 (1)
N1-C6-C7	111.2 (4)	01A—C11	O4A	114 (1)
C5-C6-C7	114.5 (4)	O2B—C11		107 (1)
C6—C7—C8	110.4 (5)	O4B—C11		105 (1)
C6C7C17	115.0 (4)	01A—C11	O3A	109 (1)
C8C7C17	108.5 (5)	04A—C11	O3A	118 (1)
C9-C8-C7	106.5 (4)	01A—C11	O2A	108 (1)
C10-C9-C11	114.1 (5)	04A—Cl1	O2A	100 (1)
C10C9C8	110.3 (5)	O3A—C11	O2A	107 (1)
C11—C9—C8	111.0 (5)	02B—Cl1		109 (1)
N1-C10-C9	111.0 (5)	O4B-C11		115 (1)
C9-C11N16	113.2 (4)	01 <i>B</i> —Cl1	O3B	106 (1)
D—H···A	<i>D</i> H	HA	$D \cdots A$	D — $H \cdots A$
N16—H16···O1W ⁱ	0.86 (6)	1.99 (6)	2.823 (6)	165 (5)
O1₩—H1₩1····O4	0.83 (8)	1.94 (8)	2.761 (5)	171 (8)
01₩—H1₩2···O2A	1.00 (10)	1.84 (10)	2.843 (10)	171 (7)
Symr	netry code: ((i) $-x, y - \frac{1}{2}$	$\frac{1}{2}, 2-z.$	

Data collection: Kuma KM-4 software (Kuma, 1991). Cell refinement: Kuma KM-4 software. Data reduction: Kuma KM-4 software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1207). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Brukwicki, T. & Wysocka, W. (1989). J. Mol. Struct. 196, 343-352. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kubicki, M. & Borowiak, T. (1989). Acta Cryst. C45, 1047-1049.
- Kubicki, M., Borowiak, T. & Boczoń, W. (1991). J. Crystallogr. Spectrosc. Res. 21, 575-579.
- Kuma (1991). Kuma KM-4 User's Guide. Version 3.2. Kuma Diffraction, Wrocław, Poland.
- Pyżalska, D., Gdaniec, M., Borowiak, T. & Wolińska-Mocydlarz, J. (1980). Acta Cryst. B36, 1602–1606.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Wiewiórowski, M. & Wolińska-Mocydlarz, J. (1961). Bull. Acad. Sci. Pol. Chim. 9, 709-715.
- Wiewiórowski, M. & Wolińska-Mocydlarz, J. (1964). Bull. Acad. Sci. Pol. Chim. 12, 213–216.
- Wysocka, W. & Brukwicki, T. (1988). Planta Med. 9, 522-523.

Acta Cryst. (1995). C51, 1184-1187

A Morphine Metabolite: (–)-Morphine-3-O- β -D-glucuronide Trihydrate (M3G.3H₂O)

ZOFIA URBANCZYK-LIPKOWSKA

Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland

(Received 5 May 1993; accepted 11 November 1993)

Abstract

The title compound, $C_{23}H_{27}NO_{9.3}H_2O$, occurs in the solid state as a zwitterion solvated by three water molecules. The conformation of this morphine conjugate is extended with the strongest proton donor (hydroxyl group at C6) and acceptors (two O atoms of the carboxyl group) located on one side of the molecule. The three-dimensional hydrogen-bonding pattern shows many competing possibilities of bonding and resembles one of the probable dynamic structures in solution.

Comment

The important role of morphine in modern pain therapy, even with its numerous side effects, is unquestionable. However, the role of metabolites in neuropharmacological mechanisms is not vet fully understood. Recently, the two main metabolites of morphine, $3-O-\beta$ -D-glucuronide (M3G) and 6-O- β -D-glucuronide (M6G), have been studied at many laboratories. These conjugates of morphine and glucuronic acid, produced in the liver, have been found in blood plasma and the brain, suggesting that, in contrast to morphine itself, they can penetrate the blood-brain barrier (Yoshimura, Ida, Oguri & Tsukamoto, 1973). Other studies have demonstrated that both metabolites of morphine could be formed enzymatically in various parts of the human brain (Wahlström, Windblad, Bixo & Rane, 1988). Morphine glucuronides have adverse effects on the nervous system (Smith, Watt & Cramond, 1990). M6G is a very potent μ -receptor agonist and is much more active in vivo than morphine (Shimomura et al., 1971). M3G does not act as an analgesic but plays an important role in developing morphine tolerance (Lipkowski, Langlade, Osgood, Szyfelbein & Carr, 1992). Lipophilicity studies, along with molecular modelling of these compounds,

have shown that under physiological conditions two basic conformations are possible: an extended conformation and a conformation with an intramolecular hydrogen bond between the morphine and glucuronide units (Carrupt *et al.*, 1991).

The higher permeabilities of these two metabolites in comparison with morphine were explained on the basis of the chameleon-like properties of the molecule, possessing significantly different sized hydrophobic and hydrophilic areas in the extended and folded forms. As the conformation of the molecule and hydrogenbonding pattern seems to be essential in explaining this phenomenon, X-ray diffraction studies of the (–)morphine-3- $O-\beta$ -D-glucuronide (M3G) crystallized from water were performed.

As shown in the ORTEP (Johnson, 1965) diagram (Fig. 1), the compound occurs in the crystal as a zwitterion, with almost equal C—O distances in the carboxyl group and a well localized quaternary H(N) atom. No peculiarities in the geometry were found when compared with that of morphine hydrochloride trihydrate (Gylbert, 1973) or other morphine conjugates,

Fig. 1. A view of the molecule showing the atom labels and 50% probability ellipsoids. H atoms are represented by spheres of arbitrary radii.

e.g. naltrexonazine (Urbanczyk-Lipkowska, Lipkowski, Etter, Hahn & Portoghese, 1987) and bimorphinan (Urbanczyk-Lipkowska, Etter, Lipkowski & Portoghese, 1987).

Attempts to explain the interesting biological properties of morphine glucuronates have been made by performing lipophilicity studies, together with molecular modelling (Carrupt *et al.*, 1991). The relatively high lipophilicity of these molecular aggregates suggests that the conformation of the molecules may change significantly when crossing biological barriers. The two critical conformations, proposed by Carrupt *et al.* (1991) on the basis of molecular-modelling studies are: the extended form, with all polar groups exposed to interactions with the solvent (water), and the folded form, bonded by an intramolecular hydrogen bond and showing, outside of the folding, quite a large hydrophobic area suitable for interactions with the biological membrane.

In the crystal, the M3G molecule, like morphine hydrochloride, retains three water molecules. Fig. 2 illustrates the hydrogen-bonding pattern in the crystal, and Table 3 presents the geometry of all short hydrogenbonding-type interactions. According to Table 3, the O7 and O8 atoms of the carboxyl group of the glucuronic moiety are the strongest hydrogen-bond acceptors, whereas O6 and O19 are the strongest hydrogenbond donors. These groups form strong intermolecular hydrogen bonds between the molecules. No intramolec-

Fig. 2. Short intermolecular interactions (Å) in the hydrogen-bonding range.

Cl C2 C3 C4

C5 C6

C7

C8

C9 C10

C11

C12

C13 C14

C15

C16 N17 C18 019 C20

C21 C22

C23

C24 C25

01

02

O3 04 05

ular hydrogen bonds are found; however, two water molecules mediate non-direct hydrogen bonding between the above mentioned groups. As can be seen from Table 3, the hydrogen-bond geometry is not perfect, e.g. the hydroxyl group O5 remains unbonded as a result of competition between many bonding possibilities.

The conformation of the molecule in the crystal is extended [torsion angles C4-C3-O1-C20 and C3-O1-C20-O3 are 158.1 (4) and -121.5 (4)°, respectively]. However, in contrast to the conformation found by molecular modelling (see the scheme above), the glucuronic moiety is rotated in such a way that the carboxyl group and the five-membered ring are located on the same side of the morphine unit. Three molecules of water co-crystallize with the M3G molecule in such a way that most of the hydrogen bonds occur on one side of the molecule. The M3G molecule, even when located in the vicinity of a biological membrane (folded conformation), could probably retain some of its water molecules, thus bringing its two structural elements closer and consequently becoming more lipophilic.

Experimental

The compound was prepared according to the method described by Berrang, Twine, Hennessee & Caroll (1975). The reaction product was dissolved in hot water, stirred for 30 min and left to stand at ca 278 K. White prism-like crystals appeared after two weeks.

Crystal data

wR = 0.039

S = 1.348

•		00	0.914
$C_{23}H_{27}NO_{9}.3H_{2}O$	Mo $K\alpha$ radiation	07	1.1304
$M_r = 515.512$	$\lambda = 0.71069 \text{ Å}$	08	1.1789
Orthorhombic	Cell parameters from 25	02W	0.7830
$P2_{1}2_{1}2_{1}$	reflections	03W	0.9719
a = 10.957(1) Å	$\theta = 11.2 - 21.4^{\circ}$		
b = 12.836(2) Å	$\mu = 0.12 \text{ mm}^{-1}$		
c = 16.466(3) Å	T = 298 K	Та	ble 2.
V = 2315(1)Å ³	Prism	C2 C1	
Z = 4	$0.3 \times 0.3 \times 0.2$ mm	C11-C1	
$D_r = 1.479 \text{ Mg m}^{-3}$	White	C3-C2	
~		C4—C3	
Data collection		01–C3	
Enrof Nonius CAD 4	$0 - 25^{\circ}$	C12 - C4	
Linal-Nollius CAD-4	$\theta_{\rm max} = 2.5$	02	
diffractometer	$h = 0 \rightarrow 12$	C13-C5	
2θ scans	$k = 0 \rightarrow 15$	O2C5	
Absorption correction:	$l = 0 \rightarrow 18$	C7C6	
none	3 standard reflections	O19—C6	
2097 measured reflections	frequency: 60 min	C8—C7	
1995 independent reflections	intensity decay: 2%	C14C8	
1005 observed reflections	intensity decay. 270	C10-C9	
1995 Observed reflections		C14-C9	
$[I > 3\sigma(I)]$		NI/C9	
		CII-CI0	
Refinement			
Definement on F	$(\Delta/z) = 0.12$	H50-04	
	$(\Delta / \sigma)_{max} = 0.12$	H60_05	
K = 0.046	$\Delta \rho_{\rm max} = 0.24 \ {\rm e} \ {\rm A}^{-3}$		

1995 reflections	Atomic scattering fac-
465 parameters	tors from SHELX76
$w = 1/\sigma^2(F)$	(Sheldrick, 1976)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

 $B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$

x	у	z	Beq
0.7813 (4)	0.3552 (4)	0.3661 (3)	2.3 (İ)
0.7929 (4)	0.4360 (3)	0.4228 (3)	2.1 (1)
0.8271 (4)	0.4151 (3)	0.5027 (3)	1.6 (2)
0.8498 (4)	0.3125 (3)	0.5229 (2)	1.5 (2)
0.8663 (4)	0.1615 (3)	0.5937 (3)	2.1 (1)
0.7415 (4)	0.1222 (3)	0.6289 (3)	2.3 (1)
0.6452 (4)	0.1023 (4)	0.5655 (3)	2.6 (2)
0.6689 (4)	0.0655 (4)	0.4922 (3)	2.8 (2)
0.8164 (4)	0.0541 (3)	0.3735 (3)	2.4 (2)
0.7824 (4)	0.1583 (3)	0.3347 (3)	2.7 (1)
0.8060 (4)	0.2532 (3)	0.3871 (3)	2.0(1)
0.8457 (4)	0.2368 (3)	0.4654 (3)	1.5 (2)
0.8815 (4)	0.1352 (3)	0.5033 (3)	1.9 (1)
0.8018 (4)	0.0495 (3)	0.4666 (3)	2.3 (1)
1.0174 (4)	0.1096 (4)	0.4843 (3)	2.4 (2)
1.0397 (4)	0.0995 (4)	0.3945 (3)	2.8 (2)
0.9514 (4)	0.0241 (3)	0.3569 (2)	2.8 (1)
0.9783 (5)	0.0084 (4)	0.2685 (3)	3.9 (2)
0.6945 (3)	0.1898 (2)	0.6885 (2)	3.0(1)
0.8496 (4)	0.5906 (3)	0.5523 (3)	2.0(1)
0.7414 (4)	0.6511 (3)	0.5855 (3)	2.2 (1)
0.7685 (4)	0.7652 (3)	0.5805 (3)	2.4 (2)
0.8878 (4)	0.7900 (3)	0.6252 (3)	2.4 (1)
0.9885 (4)	0.7207 (3)	0.5906 (3)	2.1 (1)
1.1107 (4)	0.7345 (4)	0.6364 (3)	2.5 (1)
0.8296 (3)	0.4842 (2)	0.5661 (2)	2.4 (1)
0.8738 (3)	0.2751 (2)	0.5990 (2)	2.3 (1)
0.9555 (3)	0.6141 (2)	0.5985 (2)	2.2 (1)
0.6329 (3)	0.6232 (2)	0.5422 (2)	2.7 (1)
0.6678 (3)	0.8214 (2)	0.6170 (2)	3.5 (1)
0.9143 (3)	0.8962 (2)	0.6128 (2)	3.1 (1)
1.1304 (3)	0.6760 (3)	0.6945 (2)	3.6(1)
1.1789 (3)	0.8058 (3)	0.6119 (2)	3.0(1)
0.7836 (4)	0.4197 (3)	0.7409 (2)	4.7 (1)
0.9156 (4)	-0.1972 (3)	0.3765 (3)	6.1 (2)
0.9719 (4)	0.9866 (3)	0.7536 (3)	5.7 (2)

Selected geometric parameters (Å, °)

1 113111	C2C1	1.401 (7)	C13-C12	1.498 (6
$0.3 \times 0.3 \times 0.2 \text{ mm}$	C11C1	1.381 (6)	C14-C13	1.529 (6
White	C3—C2	1.394 (7)	C15-C13	1.557 (6
	C4—C3	1.381 (6)	C16-C15	1.504 (7
	O1C3	1.370 (5)	N17-C16	1.502 (6
	C12C4	1.357 (6)	C18—N17	1.499 (6
$\theta_{\rm max} = 25^{\circ}$	O2C4	1.367 (5)	C21-C20	1.519 (6
$h = 0 \rightarrow 12$	C6—C5	1.569 (6)	O1C20	1.402 (5
h = 0 15	C13-C5	1.535 (7)	O3-C20	1.420 (6)
$k = 0 \rightarrow 15$	O2C5	1.463 (5)	C22-C21	1.497 (5
$l = 0 \rightarrow 18$	C7C6	1.506 (7)	O4—C21	1.432 (6)
3 standard reflections	O19-C6	1.408 (5)	C23—C22	1.534 (6)
frequency: 60 min	C8—C7	1.322 (7)	O5-C22	1.449 (5
internetity, do soon 207	C14C8	1.530 (6)	C24—C23	1.528 (6)
intensity decay: 2%	C10-C9	1.528 (6)	O6-C23	1.409 (5)
	C14—C9	1.542 (7)	C25—C24	1.547 (6)
	N17C9	1.553 (6)	O3—C24	1.421 (5)
	C11—C10	1.515 (6)	07—C25	1.235 (6)
	C12-C11	1.377 (7)	O8-C25	1.249 (6)
	H40—O4	1.02 (4)	H4W—O2W	1.09(7)
$(\Delta/\sigma)_{\rm max} = 0.12$	H50—O5	0.88 (5)	H5W—O3W	1.01 (5)
$\Delta \alpha = 0.24 \text{ e} $	H60—O6	0.94 (4)	H6W—O3W	0.88 (6)
$\Delta p_{\text{max}} = 0.24 \text{ C A}$	H1W—O1W	0.95 (6)	H6W—H5W	1.41 (8)
$\Delta \rho_{\rm min} = -0.17 {\rm e A}^{\circ}$	H2W-01W	1.26 (5)	H17N—N17	1.09 (4)
Extinction correction: none	H3W—O2W	0.83 (6)	H190-019	0.92 (5)

C1-C2-C3	120.7 (4)	C9-N17-H17N	107 (2)
C2C1C11	121.1 (4)	C14C9N17	105.3 (3)
CI-CII-CI0	125.9 (4)	C9N17C16	112.4 (3)
C1-C11-C12	116.2 (4)	C9-N17-C18	113.1 (4)
C2-C3-C4	117.3 (4)	C10-C11-C12	117.7 (4)
C2C301	126.9 (4)	C11-C12-C13	127.3 (4)
C3-C4-C12	120.6 (4)	C12C13C14	108.2 (4)
C3-C4-02	126.2 (3)	C12C13C15	110.5 (4)
C4C3O1	115.5 (4)	C14C13C15	108.3 (4)
C3-01-C20	120.7 (4)	C13C15C16	111.7 (4)
C4C12C11	123.6 (4)	C15-C16-N17	110.8 (4)
C4C12C13	108.9 (4)	C16-N17-C18	111.1 (4)
C12C4O2	113.2 (3)	C20C21C22	109.0 (4)
C4-02-C5	106.5 (3)	C20C21O4	109.9 (4)
C5-C6-C7	114.1 (4)	C21-C20-O1	108.5 (3)
C5-C6-019	112.2 (3)	C21-C20-O3	109.6 (4)
C6-C5-C13	112.5 (4)	O1-C20-O3	104.3 (3)
C6-C5-02	110.3 (3)	C20O3C24	111.3 (3)
C5-C13-C12	100.6 (3)	C21-C22-C23	110.2 (3)
C5C13C14	118.6 (4)	C21-C22-O5	108.2 (3)
C5-C13-C15	110.2 (4)	C22-C21-O4	112.4 (3)
C13-C5-02	105.7 (3)	C22-C23-C24	108.4 (4)
C6-C7-C8	123.8 (4)	C22-C23-O6	107.8 (3)
C7C6019	109.4 (4)	C23-C22-O5	110.2 (3)
C7C8C14	119.1 (4)	C23C24C25	112.1 (4)
C8-C14-C9	111.6 (4)	C23-C24-O3	110.0 (3)
C8-C14-C13	109.8 (4)	C24C23O6	111.1 (3)
C9-C10-C11	115.1 (4)	C24C25O7	117.3 (4)
C10-C9-C14	115.1 (3)	C24C25O8	116.3 (4)
C10-C9-N17	112.1 (3)	C25-C24-O3	106.6 (3)
C9-C14-C13	107.8 (3)	O7—C25—O8	126.2 (4)
H1WO1WH2W	105 (5)	C16-N17-H17N	112 (2)
H3W	82 (5)	C18-N17-H17N	101 (2)
H5WO3WH6W	97 (5)	C22-O5-H50	101 (4)
C6-019-H190	129 (3)	C23-06-H60	113 (3)

Table 3. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	<i>D</i> —H· · · <i>A</i>		
N17H17N····O2W	1.09 (4)	1.90 (4)	2.886 (5)	149 (3)		
O6—H60· · ·O3₩	0.94 (4)	1.73 (4)	2.668 (6)	175 (4)		
O1W—H1W···O2	0.95 (6)	2.20 (6)	3.143 (5)	170 (5)		
O4—H40· · ·O8 ⁱ	1.02 (4)	1.74 (4)	2.743 (4)	167 (4)		
O19—H190· · ·O7 ^ü	0.92 (5)	1.96 (4)	2.725 (5)	140 (4)		
O1W—H2W···O8	1.26 (5)	1.60 (5)	2.860 (5)	175 (4)		
O2W—H4W···O8 ⁱⁱⁱ	1.09 (4)	2.37 (5)	2.951 (5)	111 (4)		
O3WH5W···O7 ^{iv}	1.01 (5)	1.84 (5)	2.810 (6)	160 (3)		
O3₩H5W···O3	1.01 (5)	2.40 (4)	3.040 (6)	121 (4)		
O3W—H6W···O1W	0.88 (6)	2.30 (5)	2.815 (6)	118 (5)		
Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, 1 - z$; (ii) $2 - x, y - \frac{1}{2}, \frac{3}{2} - z$;						
(iii) $x = \frac{1}{2}, \frac{1}{2}, -\overline{y}, \overline{1} = z$; (iv) $2 = x, \frac{1}{2} + y, \frac{3}{2} = z$.						

Intensities were corrected for Lp effects and variation in the intensity of the standard reflections. The structure was solved by direct methods (*SHELXS86*; Sheldrick, 1985) and refined by full-matrix least squares minimizing $\Sigma w (\Delta F)^2$, where $w = 1/\sigma^2(F)$ and σ was obtained from counting statistics (*SHELX*76; Sheldrick, 1976). All water, hydroxyl and H(N) atoms were found from ΔF synthesis and refined; otherwise, the atomic parameters were recalculated after every six cycles of refinement. The electron-density maximum always accompanied the O2W atom, showing that the second water molecule is slightly disordered. No fluctuations of electron density above that value were observed on the final $\Delta \rho$ maps. All calculations were performed on a PC/486 computer, using the programs quoted above and our own supporting programs.

References

- Berrang, B., Twine, C. E., Hennessee, G. L. & Caroll, F. I. (1975). Synth. Commun. 5, 231–236.
- Carrupt, P.-A., Testa, B., Bechalany, A., Tayar, N. E., Descas, P. & Perrissoud, D. (1991). J. Med. Chem. 34, 1272-1275.
- Gylbert, L. (1973). Acta Cryst. B29, 1630-1635.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Lipkowski, A. W., Langlade, A., Osgood, P. F., Szyfelbein, S. K. & Carr, D. (1992). 54th Annual Scientific Meeting on Drug Dependence, Keyston, 20-25 June, abstract No. 065, p. 115.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Shimomura, K., Kamata, O., Ueki, S., Ida, S., Oguri, K., Yoshimura, H. & Tsukamoto, H. (1971). *Tohoku J. Exp. Med.* **105**, 45–52.
- Smith, M. T., Watt, J. A. & Cramond, T. (1990). Life Sci. 47, 579-585.
- Urbanczyk-Lipkowska, Z., Etter, M. C., Lipkowski, A. W. & Portoghese, P. S. (1987). J. Mol. Struct. 159, 287–295.
- Urbanczyk-Lipkowska, Z., Lipkowski, A. W., Etter, M. C., Hahn, E. F. & Portoghese, P. S. (1987). J. Med. Chem. 30, 1489-1494.
- Wahlström, A., Windblad, B., Bixo, M. & Rane, A. (1988). Pain, 35, 121-127.

Yoshimura, H., Ida, S., Oguri, K. & Tsukamoto, H. (1973). Biochem. Pharmacol. 22, 1423-1430.

Acta Cryst. (1995). C51, 1187-1189

3-Acetylamino-1,4-benzoquinone 4-Oxime

Trushar Adatia, Hengameh Barjesteh,* John Charalambous, Nick Choi and Mary McPartlin

School of Applied Chemistry, University of North London, Holloway Road, London N7 8DB, England

(Received 17 January 1994; accepted 7 November 1994)

Abstract

In the title compound, $C_8H_8N_2O_3$, the ring system conforms to an almost planar configuration. The mean values of the two short and four long C—C bond distances in the six-membered ring are 1.339 (8) and 1.450 (8) Å, respectively. In the oxime group, the bond dimensions are C—N 1.301 (7), N—O 1.361 (6) and C—N—O 112.5 (4)°. The quinonic C=O bond distance is 1.234 (7) Å, which is similar to the C=O bond length [1.222 (7) Å] of the amide group. The crystal structure is stabilized by intermolecular hydrogen bonding.

Comment

It has been well established that in solution quinone monooximes exhibit nitrosophenolic/quinone oximic tautomerism (Burawoy, Cais, Chamberlain, Liversedge

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: KA1049). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.